Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels.

نویسندگان

  • Xiaolin Wang
  • Duc T T Phan
  • Agua Sobrino
  • Steven C George
  • Christopher C W Hughes
  • Abraham P Lee
چکیده

This paper reports a method for generating an intact and perfusable microvascular network that connects to microfluidic channels without appreciable leakage. This platform incorporates different stages of vascular development including vasculogenesis, endothelial cell (EC) lining, sprouting angiogenesis, and anastomosis in sequential order. After formation of a capillary network inside the tissue chamber via vasculogenesis, the adjacent microfluidic channels are lined with a monolayer of ECs, which then serve as the high-pressure input ("artery") and low pressure output ("vein") conduits. To promote a tight interconnection between the artery/vein and the capillary network, sprouting angiogenesis is induced, which promotes anastomosis of the vasculature inside the tissue chamber with the EC lining along the microfluidic channels. Flow of fluorescent microparticles confirms the perfusability of the lumenized microvascular network, and minimal leakage of 70 kDa FITC-dextran confirms physiologic tightness of the EC junctions and completeness of the interconnections between artery/vein and the capillary network. This versatile device design and its robust construction methodology establish a physiological transport model of interconnected perfused vessels from artery to vascularized tissue to vein. The system has utility in a wide range of organ-on-a-chip applications as it enables the physiological vascular interconnection of multiple on-chip tissue constructs that can serve as disease models for drug screening.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering Anastomosis between Biological Perfused Vessel Networks and Endothelial Cell-lined Microfluidic Channels

This paper reports, for the first time, a microfluidic system that can reproduce the vascular anastomosis between a perfused vessel network in a 3D tissue chamber and an endothelial cell (EC)-lined microfluidic channel. By using a decoupling design of the microfluidic device, the physiological microenvironment including both the interstitial flow for vasculogenesis and shear stress for EC linin...

متن کامل

Capillary network formation by the co-culture of endothelial cells and mesenchymal stem cells in a microfluidic device

In the field of tissue engineering and regenerative medicine, there is a demand for construction of three-dimensional (3D) organs such as liver, pancreas, and kidney. Although recent advances in tissue engineering allowed us to construct two-dimensional tissues such as skin and cornea, it is still challenging to construct 3D organs. Since these vital organs are complex in structure and contain ...

متن کامل

Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature.

One critical obstacle facing tissue engineering is the formation of functional vascular networks that can support tissue survival in vivo. We hypothesized that prevascularizing a tissue construct with networks of well-formed capillaries would accelerate functional anastomosis with the host upon implantation. Fibrin-based tissues were prevascularized with capillary networks by coculturing human ...

متن کامل

Two Dimensional Mathematical Model of Tumor Angiogenesis: Coupling of Avascular Growth and Vascularization

Introduction As a tumor grows, the demand for oxygen and nutrients increases and it grows further if acquires the ability to induce angiogenesis. In this study, we aimed to present a two-dimensional continuous mathematical model for avascular tumor growth, coupled with a discrete model of angiogenesis. Materials and Methods In the avascular growth model, tumor is considered as a single mass, wh...

متن کامل

In vitro formation and characterization of a perfusable three-dimensional tubular capillary network in microfluidic devices.

This paper describes the in vitro formation and characterization of perfusable capillary networks made of human umbilical vein endothelial cells (HUVECs) in microfluidic devices (MFDs). Using this platform, an array of three-dimensional (3D) tubular capillaries of various dimensions (50-150 μm in diameter and 100-1600 μm in length) can be formed reproducibly. To generate connected blood vessels...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 16 2  شماره 

صفحات  -

تاریخ انتشار 2016